If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
5-(1/x)-(8/(x^2)) = 0
5-x^-1-8*x^-2 = 0
t_1 = x^-1
5-8*t_1^2-1*t_1^1 = 0
5-8*t_1^2-t_1 = 0
DELTA = (-1)^2-(-8*4*5)
DELTA = 161
DELTA > 0
t_1 = (161^(1/2)+1)/(-8*2) or t_1 = (1-161^(1/2))/(-8*2)
t_1 = (161^(1/2)+1)/(-16) or t_1 = (1-161^(1/2))/(-16)
t_1 = (161^(1/2)+1)/(-16)
x^-1-((161^(1/2)+1)/(-16)) = 0
1*x^-1 = (161^(1/2)+1)/(-16) // : 1
x^-1 = (161^(1/2)+1)/(-16)
-1 < 0
1/(x^1) = (161^(1/2)+1)/(-16) // * x^1
1 = ((161^(1/2)+1)/(-16))*x^1 // : (161^(1/2)+1)/(-16)
-16*(161^(1/2)+1)^-1 = x^1
x = -16*(161^(1/2)+1)^-1
t_1 = (1-161^(1/2))/(-16)
x^-1-((1-161^(1/2))/(-16)) = 0
1*x^-1 = (1-161^(1/2))/(-16) // : 1
x^-1 = (1-161^(1/2))/(-16)
-1 < 0
1/(x^1) = (1-161^(1/2))/(-16) // * x^1
1 = ((1-161^(1/2))/(-16))*x^1 // : (1-161^(1/2))/(-16)
-16*(1-161^(1/2))^-1 = x^1
x = -16*(1-161^(1/2))^-1
x in { -16*(161^(1/2)+1)^-1, -16*(1-161^(1/2))^-1 }
| -5x-6=15 | | -3x-2+5x^2=0 | | 16x^2+40x+50=0 | | -6.21+7.8k=8.6k+4.57 | | t-6a=2 | | -18=3(-z+6)2z | | -12j-7=-12j | | 12r-3(9-r)=33 | | 24w-30=6w | | 3p-5-1=18 | | 10u+4=8+10u | | -48-48x=-16-16x | | 8(x-3)-5=3x+5(-5+X) | | 5w+4-10w=-5w+4 | | 5x+3(2x-8)=8x | | -30=4w | | -5-7q+3=-2-7q | | 8-24n=-8-24n | | 21n^2+112-448=0 | | 15=-6-(3x/8) | | -8n-12=12-8n | | 6x=x^2-12x+32 | | 10+5g=-10+7g | | 36z^2-60z+25=0 | | 6x=x^2-12x+2 | | 5(35+.08m)=5(25+.25m) | | 2c^2-80=0 | | 9m=-4+10m | | xy+3y=1 | | 9y-4x=13 | | 8+4p=7p-1 | | -8n+8+8n=2n+2-2n |